3.150 \(\int \frac{\sqrt{\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^3} \, dx\)

Optimal. Leaf size=317 \[ \frac{\left (\frac{1}{16}+\frac{i}{16}\right ) (B+(1+i) A) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a^3 d}-\frac{\left (\frac{1}{16}+\frac{i}{16}\right ) (B+(1+i) A) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a^3 d}+\frac{(2 i A+(1-i) B) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{32 \sqrt{2} a^3 d}-\frac{(2 i A+(1-i) B) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{32 \sqrt{2} a^3 d}+\frac{B \sqrt{\tan (c+d x)}}{8 d \left (a^3+i a^3 \tan (c+d x)\right )}+\frac{(-B+i A) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(2 B+i A) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2} \]

[Out]

((1/16 + I/16)*((1 + I)*A + B)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*a^3*d) - ((1/16 + I/16)*((1 +
I)*A + B)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*a^3*d) + (((2*I)*A + (1 - I)*B)*Log[1 - Sqrt[2]*Sqr
t[Tan[c + d*x]] + Tan[c + d*x]])/(32*Sqrt[2]*a^3*d) - (((2*I)*A + (1 - I)*B)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]
] + Tan[c + d*x]])/(32*Sqrt[2]*a^3*d) + ((I*A - B)*Sqrt[Tan[c + d*x]])/(6*d*(a + I*a*Tan[c + d*x])^3) + ((I*A
+ 2*B)*Sqrt[Tan[c + d*x]])/(12*a*d*(a + I*a*Tan[c + d*x])^2) + (B*Sqrt[Tan[c + d*x]])/(8*d*(a^3 + I*a^3*Tan[c
+ d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.624298, antiderivative size = 317, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3595, 3596, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{\left (\frac{1}{16}+\frac{i}{16}\right ) (B+(1+i) A) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a^3 d}-\frac{\left (\frac{1}{16}+\frac{i}{16}\right ) (B+(1+i) A) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{\sqrt{2} a^3 d}+\frac{(2 i A+(1-i) B) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{32 \sqrt{2} a^3 d}-\frac{(2 i A+(1-i) B) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{32 \sqrt{2} a^3 d}+\frac{B \sqrt{\tan (c+d x)}}{8 d \left (a^3+i a^3 \tan (c+d x)\right )}+\frac{(-B+i A) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(2 B+i A) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[Tan[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^3,x]

[Out]

((1/16 + I/16)*((1 + I)*A + B)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*a^3*d) - ((1/16 + I/16)*((1 +
I)*A + B)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*a^3*d) + (((2*I)*A + (1 - I)*B)*Log[1 - Sqrt[2]*Sqr
t[Tan[c + d*x]] + Tan[c + d*x]])/(32*Sqrt[2]*a^3*d) - (((2*I)*A + (1 - I)*B)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]
] + Tan[c + d*x]])/(32*Sqrt[2]*a^3*d) + ((I*A - B)*Sqrt[Tan[c + d*x]])/(6*d*(a + I*a*Tan[c + d*x])^3) + ((I*A
+ 2*B)*Sqrt[Tan[c + d*x]])/(12*a*d*(a + I*a*Tan[c + d*x])^2) + (B*Sqrt[Tan[c + d*x]])/(8*d*(a^3 + I*a^3*Tan[c
+ d*x]))

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{\tan (c+d x)} (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^3} \, dx &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}-\frac{\int \frac{\frac{1}{2} a (i A-B)-\frac{1}{2} a (5 A-7 i B) \tan (c+d x)}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^2} \, dx}{6 a^2}\\ &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(i A+2 B) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2}-\frac{\int \frac{3 i a^2 A-3 a^2 (A-2 i B) \tan (c+d x)}{\sqrt{\tan (c+d x)} (a+i a \tan (c+d x))} \, dx}{24 a^4}\\ &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(i A+2 B) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2}+\frac{B \sqrt{\tan (c+d x)}}{8 d \left (a^3+i a^3 \tan (c+d x)\right )}-\frac{\int \frac{3 a^3 (2 i A+B)+3 i a^3 B \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{48 a^6}\\ &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(i A+2 B) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2}+\frac{B \sqrt{\tan (c+d x)}}{8 d \left (a^3+i a^3 \tan (c+d x)\right )}-\frac{\operatorname{Subst}\left (\int \frac{3 a^3 (2 i A+B)+3 i a^3 B x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{24 a^6 d}\\ &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(i A+2 B) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2}+\frac{B \sqrt{\tan (c+d x)}}{8 d \left (a^3+i a^3 \tan (c+d x)\right )}-\frac{\left (\left (\frac{1}{16}+\frac{i}{16}\right ) ((1+i) A+B)\right ) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a^3 d}-\frac{(2 i A+(1-i) B) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{16 a^3 d}\\ &=\frac{(i A-B) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(i A+2 B) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2}+\frac{B \sqrt{\tan (c+d x)}}{8 d \left (a^3+i a^3 \tan (c+d x)\right )}-\frac{\left (\left (\frac{1}{32}+\frac{i}{32}\right ) ((1+i) A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a^3 d}-\frac{\left (\left (\frac{1}{32}+\frac{i}{32}\right ) ((1+i) A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a^3 d}+\frac{(2 i A+(1-i) B) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{32 \sqrt{2} a^3 d}+\frac{(2 i A+(1-i) B) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{32 \sqrt{2} a^3 d}\\ &=\frac{(2 i A+(1-i) B) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{32 \sqrt{2} a^3 d}-\frac{(2 i A+(1-i) B) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{32 \sqrt{2} a^3 d}+\frac{(i A-B) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(i A+2 B) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2}+\frac{B \sqrt{\tan (c+d x)}}{8 d \left (a^3+i a^3 \tan (c+d x)\right )}--\frac{\left (\left (\frac{1}{16}+\frac{i}{16}\right ) ((1+i) A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a^3 d}-\frac{\left (\left (\frac{1}{16}+\frac{i}{16}\right ) ((1+i) A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a^3 d}\\ &=\frac{\left (\frac{1}{16}+\frac{i}{16}\right ) ((1+i) A+B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a^3 d}-\frac{\left (\frac{1}{16}+\frac{i}{16}\right ) ((1+i) A+B) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{\sqrt{2} a^3 d}+\frac{(2 i A+(1-i) B) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{32 \sqrt{2} a^3 d}-\frac{(2 i A+(1-i) B) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{32 \sqrt{2} a^3 d}+\frac{(i A-B) \sqrt{\tan (c+d x)}}{6 d (a+i a \tan (c+d x))^3}+\frac{(i A+2 B) \sqrt{\tan (c+d x)}}{12 a d (a+i a \tan (c+d x))^2}+\frac{B \sqrt{\tan (c+d x)}}{8 d \left (a^3+i a^3 \tan (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 3.3741, size = 272, normalized size = 0.86 \[ \frac{e^{-4 i (c+d x)} \sec (c+d x) (\cos (3 (c+d x))-i \sin (3 (c+d x))) \left (\left (-2 e^{2 i (c+d x)}+e^{4 i (c+d x)}+2 e^{6 i (c+d x)}-1\right ) \left (A e^{2 i (c+d x)}+A-2 i B e^{2 i (c+d x)}+i B\right )-6 (A-i B) e^{6 i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \sqrt{1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )-3 A e^{6 i (c+d x)} \sqrt{-1+e^{4 i (c+d x)}} \tan ^{-1}\left (\sqrt{-1+e^{4 i (c+d x)}}\right )\right )}{96 a^3 d \sqrt{\tan (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[Tan[c + d*x]]*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^3,x]

[Out]

(((A + I*B + A*E^((2*I)*(c + d*x)) - (2*I)*B*E^((2*I)*(c + d*x)))*(-1 - 2*E^((2*I)*(c + d*x)) + E^((4*I)*(c +
d*x)) + 2*E^((6*I)*(c + d*x))) - 3*A*E^((6*I)*(c + d*x))*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4
*I)*(c + d*x))]] - 6*(A - I*B)*E^((6*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))
]*ArcTanh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])*Sec[c + d*x]*(Cos[3*(c + d*x)] - I*Sin[
3*(c + d*x)]))/(96*a^3*d*E^((4*I)*(c + d*x))*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.066, size = 278, normalized size = 0.9 \begin{align*}{\frac{-{\frac{i}{8}}B}{{a}^{3}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{3}} \left ( \tan \left ( dx+c \right ) \right ) ^{{\frac{5}{2}}}}-{\frac{5\,B}{12\,{a}^{3}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{3}} \left ( \tan \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}}-{\frac{{\frac{i}{12}}A}{{a}^{3}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{3}} \left ( \tan \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}}+{\frac{{\frac{i}{8}}B}{{a}^{3}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{3}}\sqrt{\tan \left ( dx+c \right ) }}-{\frac{A}{4\,{a}^{3}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{3}}\sqrt{\tan \left ( dx+c \right ) }}-{\frac{A}{4\,{a}^{3}d \left ( \sqrt{2}-i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}-i\sqrt{2}}} \right ) }+{\frac{A}{4\,{a}^{3}d \left ( \sqrt{2}+i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}+i\sqrt{2}}} \right ) }-{\frac{{\frac{i}{4}}B}{{a}^{3}d \left ( \sqrt{2}+i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}+i\sqrt{2}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^3,x)

[Out]

-1/8*I/d/a^3/(tan(d*x+c)-I)^3*B*tan(d*x+c)^(5/2)-5/12/d/a^3/(tan(d*x+c)-I)^3*B*tan(d*x+c)^(3/2)-1/12*I/d/a^3/(
tan(d*x+c)-I)^3*tan(d*x+c)^(3/2)*A+1/8*I/d/a^3/(tan(d*x+c)-I)^3*B*tan(d*x+c)^(1/2)-1/4/d/a^3/(tan(d*x+c)-I)^3*
A*tan(d*x+c)^(1/2)-1/4/d/a^3/(2^(1/2)-I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1/2)-I*2^(1/2)))*A+1/4/d/a^3/(2
^(1/2)+I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1/2)+I*2^(1/2)))*A-1/4*I/d/a^3/(2^(1/2)+I*2^(1/2))*arctan(2*ta
n(d*x+c)^(1/2)/(2^(1/2)+I*2^(1/2)))*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.61481, size = 1670, normalized size = 5.27 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/96*(3*a^3*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^6*d^2))*e^(6*I*d*x + 6*I*c)*log(2*((a^3*d*e^(2*I*d*x + 2*I*c) +
 a^3*d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^6*d^2)) +
 (A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - 3*a^3*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^6*d^
2))*e^(6*I*d*x + 6*I*c)*log(-2*((a^3*d*e^(2*I*d*x + 2*I*c) + a^3*d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*
d*x + 2*I*c) + 1))*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^6*d^2)) - (A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*
c)/(I*A + B)) - 24*a^3*d*sqrt(-1/64*I*A^2/(a^6*d^2))*e^(6*I*d*x + 6*I*c)*log(1/8*(8*(a^3*d*e^(2*I*d*x + 2*I*c)
 + a^3*d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(-1/64*I*A^2/(a^6*d^2)) + A)*e^(-2*
I*d*x - 2*I*c)/(a^3*d)) + 24*a^3*d*sqrt(-1/64*I*A^2/(a^6*d^2))*e^(6*I*d*x + 6*I*c)*log(-1/8*(8*(a^3*d*e^(2*I*d
*x + 2*I*c) + a^3*d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(-1/64*I*A^2/(a^6*d^2))
- A)*e^(-2*I*d*x - 2*I*c)/(a^3*d)) - 2*((2*I*A + 4*B)*e^(6*I*d*x + 6*I*c) + (5*I*A + 4*B)*e^(4*I*d*x + 4*I*c)
+ (4*I*A - B)*e^(2*I*d*x + 2*I*c) + I*A - B)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(
-6*I*d*x - 6*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.21718, size = 177, normalized size = 0.56 \begin{align*} -\frac{\left (i + 1\right ) \, \sqrt{2} A \arctan \left (\left (\frac{1}{2} i + \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{16 \, a^{3} d} - \frac{\left (i - 1\right ) \, \sqrt{2}{\left (A - i \, B\right )} \arctan \left (-\left (\frac{1}{2} i - \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{16 \, a^{3} d} - \frac{3 i \, B \tan \left (d x + c\right )^{\frac{5}{2}} + 2 i \, A \tan \left (d x + c\right )^{\frac{3}{2}} + 10 \, B \tan \left (d x + c\right )^{\frac{3}{2}} + 6 \, A \sqrt{\tan \left (d x + c\right )} - 3 i \, B \sqrt{\tan \left (d x + c\right )}}{24 \, a^{3} d{\left (\tan \left (d x + c\right ) - i\right )}^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

-(1/16*I + 1/16)*sqrt(2)*A*arctan((1/2*I + 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/(a^3*d) - (1/16*I - 1/16)*sqrt(2)*
(A - I*B)*arctan(-(1/2*I - 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/(a^3*d) - 1/24*(3*I*B*tan(d*x + c)^(5/2) + 2*I*A*t
an(d*x + c)^(3/2) + 10*B*tan(d*x + c)^(3/2) + 6*A*sqrt(tan(d*x + c)) - 3*I*B*sqrt(tan(d*x + c)))/(a^3*d*(tan(d
*x + c) - I)^3)